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Four recently proposed theories of the Heisenberg ferromagnet have been examined within a Green func
tion formulation. The decoupling parameters were chosen for each theory so that the expressions for the re-
normalization factor and the magnetization are identical to those originally derived. Comparisons of the ap
proximations introduced and of the results are more readily made within this single theoretical framework. 
The temperature dependence of the magnetization has been numerically computed for each of the four 
theories for simple cubic, body-centered cubic, and face-centered cubic lattices with spin J. 

I. INTRODUCTION 

THE statistical mechanics of a Heisenberg model of 
a ferromagnet have been studied rigorously in 

both the low-temperature1-4 and high-temperature5-8 

regions. Although rigorous solutions have not been 
found for the intermediate region, numerous approxi
mate theories9-21 have been developed which include 
this temperature range. Since various techniques have 
been used to develop these theories, it is often difficult 
to compare the approximations used in the development 
and thereby understand the physical basis for simi
larities or differences in the theoretical predictions. 

We consider four recently proposed theories (M. 
Bloch,15 random phase approximation16 or Tyablikov,18 

Oguchi-Honma,20 and Callen21) which have had varying 
degrees of success when compared with the rigorous low-
and high-temperature results. 

The M. Bloch15 theory was developed by retaining in 
the Hamiltonian the diagonal terms up to fourth order 
in the Holstein-Primakoff22 creation and annihilation 
operators and assuming that this truncated Hamiltonian 
remains valid through the entire temperature range. The 
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resulting expression for the magnetization agrees with 
the Dyson1 expansion at low temperatures (i.e., the 
leading correction due to magnon interactions is of the 
order of T4); as the temperature is increased, it is found 
that no self-consistent solution exists above a certain 
maximum temperature. This maximum temperature 
agrees favorably with Curie temperatures obtained 
from the rigorous high-temperature expansions; how
ever, the magnetization is not zero at this maximum 
temperature, but has a value of about | of the saturation 
value. 

The random phase approximation of Englert16 (the 
results of which are identical to those given by 
Tyablikov18 in terms of double time-temperature-de
pendent Green functions) consists of approximating the 
commutation relations of the Fourier components of 
spin operators to the extent of replacing the com
mutation relation [SA^x+,»S'x~] = 2)Sy by [5Vx+,6y~"] 
= 2(Sz)5k,Q. The low-temperature expansion of the re
sulting expression for the magnetization contains a Tz 

term and, therefore, does not agree with Dyson.1 The 
magnetization exhibits a definite Curie temperature at 
which the spontaneous magnetization vanishes; this 
Curie temperature compares favorably with the rigorous 
results. 

The Oguchi-Honma20 and Callen21 theories were both 
developed using the techniques of double time-tempera
ture-dependent Green functions. However, Oguchi and 
Honma20 express the spin operators in terms of the 
Holstein-PrimakofP2 boson operators through the use of 
the Oguchi transformation,23 while Callen21 treats the 
spin operators directly. Both theories introduce decou
pling approximations in order to solve the Green func
tion equation of motion, and both theories give terms in 
the low-temperature expansion of the magnetization in 
addition to those found rigorously. (The leading addi
tional term is a T*s+Zl2 term, which for spin J is T3.) 
Since the theories have identical low-temperature be
havior, it is plausible that in this limit the approxima
tions made are identical. However, at higher tempera
tures the theories differ markedly. The Oguchi-Honma 

3 T . Oguchi, Progr. Theoret. Phys. (Kyoto) 25, 721 (1961). 
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theory predicts an infinite Curie temperature24; the 
magnetization asymptotically approaches zero as the 
temperature approaches infinity. In contrast, the Callen 
theory predicts a definite finite Curie temperature at 
which the spontaneous magnetization vanishes. While 
this Curie temperature is somewhat high compared to 
the rigorous results for spin J, the Callen Curie tempera
tures show good agreement as the magnitude of the spin 
becomes larger (as Callen21 has shown, the Curie tem
perature is quite sensitive to the decoupling approxima
tion, and the Callen Curie temperatures can easily be 
made identical to those of Tyablikov18 and Tahir-Kheli 
and ter Haar19 without altering the low- and high-
temperature behavior of the Callen theory). 

We formulate these four theories for the case of 
nearest-neighbor exchange interactions and spin \ in a 
Green function calculation using an extended decoupling 
approximation involving two decoupling parameters. 
The choice of one of the decoupling parameters de
termines the form of the expression for the transverse 
correlation function and, therefore, the magnetization. 
Thus, this parameter is uniquely determined for each 
theory by demanding that the expression for the 
magnetization be identical to that obtained from each of 
the theories as originally derived. The quasiparticle 
energies as given by all four theories are equivalent to 
simple spin-wave energies "renormalized" by a factor 
which is dependent upon the number of excitations and, 
therefore, upon the temperature. The renormalization 
factors obtained by these theories all differ. Since the 
form of this factor is dependent upon the choice of both 
decoupling factors, and since the choice of one of these 
parameters is dictated by the form of the expression for 
the magnetization, the other decoupling parameter can 
be determined for each theory by demanding that the 
renormalization factor in each case be identical to that 
obtained in the original derivation. We are then able to 
discuss the similarities and differences of the theories in 
terms of the similarities and differences of the decoupling 
parameters and their physical implications. 

As an aid in making these comparisons, we have 
numerically computed the temperature dependence of 
the magnetization for each of the four theories for 
simple cubic, body-centered cubic, and face-centered 
cubic lattices with spin f. These calculations show that 
the temperature dependence of the magnetization of the 
four theories is very nearly identical in the low-tempera
ture region despite the difference in the low-temperature 
expansions of the magnetization; the higher tempera
ture behavior shows marked differences. The curves of 
the magnetization versus the normalized temperature 
(T divided by Tcune) show little structural dependence 
for any of the four theories. For the random phase and 
Callen theories, the magnetization is found to vary as 
( 1 - T/Tc)112, in the temperature range Tc/2 to Tc. The 

24 R. A. Tahir-Kheli and H. B. Callen, J. Appl. Phys. 35, 948 
(1964). 

calculations also confirm24 the infinite Curie point of the 
Oguchi-Honma theory. 

II. GREEN FUNCTION FORMULATION 

We consider the Hamiltonian 

3C= - M # o Z Sg*-J £ S,• $g+5, (1) 

where yS is the magnetic moment per ion; Ho is the 
applied magnetic field, which we assume to be in the 
negative z direction; S g is the spin operator (in units of 
fi) for the ion at site g; § is a vector connecting the gth. 
site with a nearest neighbor. We restrict our attention 
to simple lattices (including, in particular, simple cubic, 
body-centered cubic, and face-centered cubic lattices) 
with spin J and nearest-neighbor exchange interactions; 
/ is the nearest-neighbor exchange integral. 

The temperature-dependent retarded Green func
tion25 involving the operators S9

+(t) and Sr is defined 
by 

«$,+(<); Sr))= -ie(i){£S+(t),sr-]), (2) 

where 6 (t) is the step function which is unity for positive 
t and zero for negative t, S±=SxdaiSy, single square 
brackets denote a commutator, and single angular 
brackets denote an average with respect to the canonical 
density matrix of the system at temperature T. The 
Fourier transform (with respect to o>) of the Green 
function is denoted by 

GE(g,D = ((S+(t);Sr))E, (3) 

where E=ho). The equation of motion which GsigJ) 
satisfies is 

EGB&T) = -(Z$+,$-l)S9i+((LSd
+(t),K']; Sr))B. (4) 

If Eq. (4) can be solved for GsigJ), one can calculate 
the correlation function (SrSg

+{t)) from the relation 

r™ Ghu+ieigfi-Gho-uig,!) . t 
= limi / —e~%a*da). (5) 

€~*° 7-00 e(hu!kT)__l 

As we shall see, the solution of Eqs. (4) and (5) enables 
us to obtain expressions for the dispersion relation and 
the magnetization. 

The substitution into Eq. (4) of the expression ob
tained from the commutation of Sg+ with the Hamil
tonian yields 

1 
EGB(£,t) = —2(S')8g, i+fiH0GE(g,l) 

2TT 

+2J £ (((sg+8*s+-sg*sg+8+); Sr))B, (6) 
5 

25 See, for example, V. L. Bonch-Bruevich and S. V. Tyablikov, 
Green-Function Methods in Statistical Mechanics (translation) 
(North-Holland Publishing Company, Amsterdam, 1962). 
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where the commutator [S+ ,S~] has been replaced by its 
value 2SZ and where 8 indicates a sum over the nearest 
neighbors of the gth. site. Equations of motion can be 
written for the higher order Green functions which 
appear on the right side of (6); these equations in turn 
involve still higher order Green functions. At some 
point these equations of motion must be decoupled in 
order to obtain an explicit solution for GsigJ). Generally 
the procedure has been to make a decoupling approxi
mation directly in Eq. (6). Tyablikov18 has suggested 
that the Green functions of the form {{Sg

zS'/";Sr))E 
should be approximated by ignoring the fluctuations in 
Sg

z, that is, by replacing Sg
z by its average value, and 

«S,«S7+; S r » * - , <S'X<S,+; S r » . (7) 
g^f 

Callen21 has suggested an alternative method for 
decoupling which attempts to account for the correla
tion of Sz on one site with the transverse spin on 
another. He proposed that the Green function 

((SsS+Sf+;Sr))E 

be decoupled in the symmetric form 

((SaSt
+Sf+;S,-))], -». (SgS+}((Sf+; Sr))* 

+(Sf-sf+)((s+; Si-))E+(se
+St+X(Sr; s r »*. (8) 

The last term on the right side of Eq. (8) vanishes for 
the Hamiltonian we are considering since Sg

+S/+ is not 
diagonal in Stotais,but, in general, it must be included (for 
example, if the dipolar interaction is included in the 
Hamiltonian).26 

For spin \ (the procedure has been generalized by 
Callen for arbitrary spin), SQ

z can be written as 

Sg
z=S-SgS + (9) 

or 

s/=i(s,+sr-srs,,+). (10) 

Multiplying Eq. (9) by a and Eq. (10) by 1—a and 
adding the resultant equations yields 

1—a 1 + a 
Sg' = oS + Sg+Sg- SgSg+. (11) 

2 2 

Equations (8) and (11) lead to 

« S , ' S , + ; SI~))B -» ,<5 ' )«5 /+; S , - » , 
g^f 

-a(Sg-Sf+)«sg+;Sr))H. (12) 
The operator Sg~Sg

+ in Eq. (9) represents the 
deviation of (Sz) from.5. I t is this operator which is 
treated approximately when decoupling on the basis of 
Eq. (9), i.e., choosing a= 1. Therefore, Callen proposes 
Eq. (9) (a= 1) as the basis for decoupling when the 

26 C. W. Haas, Phys. Rev. 132, 228 (1963). 

deviation of (Sz) from S is small, i.e., in the low-
temperature region. 

Similarly, the operator i(Sg
+Sg~—Sg~Sg

+) in Eq. 
(10) represents the deviation of (Sz) from 0, and Callen 
proposes that Eq. (10) (a=0) be used as the basis for 
decoupling as (Sz) approaches 0. The argument for the 
use of Eq. (10) is not as transparent as that for the use 
of Eq. (9), for although the difference in the operators 
S+S~ and S~S+ is small if (S*)==0, each operator makes a 
contribution of the order of 5 , and it is each operator 
which is treated approximately, not the difference. 
Nevertheless, as we shall see, the a=0 decoupling ap
proximation seems to be appropriate in the (Sz)~0 
limit. On the basis of the above observations, Callen 
chooses (for spin J) 

a=2(Sz) (13) 

so that a -> 1 as (Sz) - » \ and a -> 0 as (Sz) —> 0. [The 
choice of a=0 over the entire temperature range is just 
Tyablikov decoupling since Eq. (12) becomes identical 
to Eq. (7).] We shall carry a explicitly throughout the 
calculation and let it be determined for each theory by 
fitting the results to those obtained in the original 
derivation as indicated in the Introduction. 

Finally, Wortis27 has indicated that the higher order 
Green function is equal to a proportionality factor times 
the lower order Green function plus an additional term. 
Tahir-Kheli28 has determined the form of both the 
proportionality factor (the "mass operator") and the 
additional term by requiring agreement of the resulting 
theory with rigorous results obtained from the low- and 
high-temperature expansions. We shall introduce this 
additional term as a second decoupling parameter to be 
determined for each of the four theories. Thus, we use a 
decoupling approximation 

{(S„*Sf+; Sr))B - ,<S'X<S,+ ; Sf))s 
g^f 

-a(SgSf+)((S+; 5 r » ^ + p ( g , / , 0 , (14) 

where p(g,f,l) is a function of the relative positions of 
the g, f, and / sites. Insertion of the decoupling ap
proximation [Eq. (14)] into the equation of motion 
[Eq. (6)] yields 

1 
EGB(g,t)=—2(S')dg,i+vn&B(g9i) 

2<ir 

+2J(Sz)ZZGE(g,l)-GE(g+8, / ) ] 
6 

+2JaZL(Sg-Sg+t)GE(gil) 
8 

-(s„rS,+)GB(g+d, Dl 

+2J L [p(g+S, g, l)-P{g, g+8, 0 ] . (15) 
5 

27 M. Wortis, Ph.D. dissertation, Harvard University, 1963 
(unpublished). 

28 R. A. Tahir-Kheli, Phys. Rev. 132, 689 (1963). 
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Since the last term on the right side of Eq. (15) 
depends only on the positions of the g and / sites, we 
shall denote that term as 0(g,l)/2T. We introduce the 
Fourier transforms dictated by translational invariance 

from (23) we find that 

G«(*)=i:*-««-»-kGJf(g>o> 

g - i 

1 

z « 

g - i 

(16) 

(17) 

(18) 

(19) 

where z is the number of nearest neighbors and (g— 1) -k 
denotes the vector products r „ r k . From (15), (16), 
(17), (18), and (19), we find 

G*(ft)=-
(2<5->+/S*) 

2ir(E-Ek) 
(20) 

where 

Ek = lxE,+2Jz(Sz){\-yk) 

2Jza 
+ E f t * ' - ? * ' - * ) * * ' . (21) 

N k> 

I t has been shown15,21 that for lattices exhibiting cubic 
symmetry, Eq. (21) can be rewritten in the form 

Ek=iiBo+Ml-yk)(2(S*)+— E yk'tv) • (22) 

The Fourier transform of the correlation function 
(SrSQ+) can be obtained from the Green function (20) 
by the use of Eq. (5) and is easily shown to be 

where 

Thus, 

where 

**=(2<S'>+0*)Vt) 

<pk= l/(eE"lkT-l). 

Ek=ixHo+ekR, 

ek=Jz(l—yk), 

(23) 

(24) 

(25) 

(26) 

the energy of a spin wave of wave vector k in the absence 
of an external magnetic field, and R is the renormali-
zation factor given by the expression 

2a 
R=2(S')+—j:(2(S')+pk)yk<pk. (27) 

N k 

For these lattices and nearest-neighbor isotropic ex
change interactions, the renormalization factor R is not 
a function of the wave vector. Since, for spin £, 

where 

(S*) = i-2(S')*+-ZPk<Pk, (29) 
N k 

<£= — E <Pk. 
N k 

(30) 

For our discussion, we shall assume P(g,l) to have the 
form Pdgj, i.e., the additional decoupling parameter 
affects only the Green function Gs(g,g).29 For this case, 
(27) and (29) simplify to 

2a(2{Sz)+(3) 
R^2(SZ)+ E m , (31) 

N k 
and 

or, alternatively, 
<S»>=l-(2<5«>+|8)*> 

< S ' > = ( * - | 8 $ ) / ( l + 2 * ) . 

III. DECOUPLING PARAMETERS 

(32) 

(33) 

The decoupling parameters a and f3 are chosen for 
each theory by first demanding that the expression (32) 
for (Sz) be identical to that originally obtained for each 
theory. This value of j3 is then inserted into Eq. (31) 
for R and a chosen for each theory by demanding that 
expression (31) then be identical to the renormalization 
factor originally obtained for each theory. 

The expressions for (Sz) and R as given by each of the 
four theories are listed in Table I. The Bloch expres
sion15 for the average value of Sz 

<s»>=i-# (34) 

is identical in form to that obtained by spin-wave theory 
and has been assumed by Bloch to be valid over the 
entire temperature range if ek is replaced by Ek. This 
expression can be obtained from (32) if 

/3=1-2<S*> 

which is equivalent to assuming 

0 = 2 $ . 

(35) 

(36) 

This choice of j3 is therefore equivalent to assuming that 
each excited quasiparticle decreases Me, the z compo
nent of the magnetization, by an amount yh. The ex
pressions for (Sz) for the other three theories19-21 are 
identical. 

<£•>=*/(1+2$) . (37) 

This result is obtained from (33) by setting 0 = 0 , which 
is, of course, the decoupling approximation which has 
been made in these cases. This choice of f3 is equivalent 
to assuming that each excited quasiparticle decreases 
Mz by an amount 2yfi(Sz), i.e., the effect of additional 
excitations on Mz decreases. The values of a necessary 

<5*> = J -<5, -5 ,+> > (28) 29 A. C. Hewson and D. ter Haar, Physics Letters 6, 136 (1963). 
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TABLE I. Renormalization factor, expression for (Sz), and decoupling parameters for each of the four theories. 

Theory R (S*) 

Bloch 

Oguchi-Honma 

Callen 

Random phase approximation 

2(S*)+-2yk<pk 

N k 

2{Sz)-\ 2 yk<fk 
N k 

8W 
2{Sz)-\ S yk<Pk 

N k 

2(S*) 

i~$ 

1+2<S> 

1+2$ 

1+2$ 

2$ 
(i.e.,l-2<S-» 

2{S*) 

to give the appropriate renormalization factors are now 
easily determined from (31). The values of a and 0 for 
each of the theories are listed in Table I. 

We consider first the low-temperature region with 
zero external field (H0=Q). By the standard low-
temperature series expansions,1 it can be easily shown 
that for all four theories 

^=f(f)r3 / 2+|7r.f(f)T5 /2+x2co,2f( l)r7 /2+- • • 
+ 3 ( l - a ) f 2 ( f ) r 3 + 3 7 r , f ( f ) r ( f ) r 4 ( 2 - « ) + . • • , (38) 

where we have retained terms up to r4 in the expansion 
and where f (x) is the Riemann zeta function, 

T^=3kT/2wzJy 

and the structure-dependent constants are 

simple cubic v=l, co = 33/32 
body-centered cubic ^ = |X2 2 / 3 , w= 281/288 
face-centered cubic v— 21/3, a> = 15/16. 

(39) 

(40) 

Substitution of (38) with a = 1 into (34) yields the 
Dyson result as calculated in the first Born approxima
tion, and the Bloch theory is, therefore, successful in 
this limit. 

In contrast, the substitution of (38) into (37) with 
any of the values of a shown in Table I does not give 
Dyson's result. In the low-temperature region where $ 
is small, (37) becomes 

(Sz)^-$+2&+- (41) 

Since <£ contains a Tm term, the <£2 term makes a 
contribution to a Tz term (plus other terms). This $2 

term is the source of the low-temperature difficulty in 
both the Oguchi-Honma and Callen theories. If the <£2 

term were not present, these theories would also agree 
with the Dyson result (to order TA) since both theories 
have values of a which in the low-temperature limit 
correspond to a= 1. For general spin, the analog of (41) 
is 

(S*)^S-$+(2S+l)&s+1. (42) 

Thus, for larger spins, the additional terms given by the 
Oguchi-Honma and Callen theories are higher order in T 
(e.g., for 5 = 1 , P ' 2 , etc.). 

The random phase approximation corresponds to a 
decoupling with ce=0. From (38) we find that <3> contains 
a T3 term. Substitution of this expression into (41) 
yields a T3 contribution from both the <£ and the <3>2 

terms which partially cancel; however, there is a net Tz 

contribution to (Sz). 
Therefore, the only theory which agrees satisfactorily 

with the rigorous results at low temperatures is the 
Bloch theory. The requirement that a approach 1 in the 
low-temperature limit is not sufficient; in addition, it is 
necessary that /3=2<I> (that is, that 2(S*)+/3 be unity to 
a certain order in T; this order in T determines the 
lowest order spurious term in (Sz)) in this temperature 
region in order to eliminate the spurious terms which 
otherwise appear in the low-temperature expansion. 

We now consider the Curie temperatures predicted by 
each theory. We are therefore interested in the case of 
H0= 0 and (Sz) —* 0. We first consider the random phase 
approximation, the Callen and the Oguchi-Honma 
theories for which the magnetization (0=0) can be ex
pressed as 

<S*>=i / ( l+2*) . (43) 

For these theories, as (Sz) —> 0, the quasiparticle 
spectrum collapses and <£>, the mean number of excited 
quasiparticles, tends to infinity as required by (43). In 
the limit of (Sz) small and 4> large 

<S->* - (44) 
<s*> - o 

Since (Sz) —> 0, we expand the Bose factors in $ using 
(24), (25), (30), and (31) and find that the Curie 
temperature is given by the expression 

Jz 

r 2a 

L N Jo 
/ 2 F ( - 1 ) , (45) 
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where 
1 1 

N k 1 — 7* 
(46) 

has been evaluated for the cubic lattices,30 and where it is 
implied that the quantity 

2a 
Z) 7k<Pk 

N k 
(47) 

be evaluated in the limit of (Sz) —» 0. 
For the case of a = 0 , Eq. (45) assumes the familiar 

form given by the random phase approximation 

kTc/Jz=l/2F(-l). (48) 

For the case of Callen decoupling, a= 2(Sz), the limiting 
value of 

E w * (49) 
N h 

can be obtained by again expanding the Bose factor, 
and Callen21 has shown that in this case 

«y/*=[F(-i)-i;i/F»(-i). (50) 

As Callen has noted, the Curie temperature is quite sen
sitive to the choice of a. If he had chosen a— (2(Sz))1+% 
where e is any positive constant, no matter how small, 
he would have obtained the random phase approxima
tion Curie temperature since the limiting value of 

(2<S'» 'X( E w 
\ N h ) 

(51) 

is zero. The term in the bracket tends to a limit but 
(2(SZ)) * tends to zero, and therefore the product tends to 
zero. (Such a choice of a, with e vanishingly small, 
would have no effect on the low- or high-temperature 
behavior of the theory.)30a Similarly for e negative, the 
limiting value of 

1 4(5') 
E W A (52) 

(2<S'»M N k 

is infinity. Therefore, in the Oguchi-Honma theory, 
where a=l (e= — 1), the limiting value of 

N h 

is infinity. From (45) we see that the Oguchi-Honma 

30 G. N. Watson, Quart. J. Math. 10, 266 (1939); M. Tikson, 
J. Res. Natl. Bur. Std. 50, 177 (1953). 
^ 30a jsj0fe added in proof. We have recently plotted the magnetiza

tion curves for various values of e. For 0 < e < oo,, the magnetization 
does indeed vanish at a temperature corresponding to the random-
phase approximation Curie temperature as given by Eq. (48). 
However, for these values of e, the magnetization curves are 
double valued and bear a resemblance in form to the type of curve 
obtained from the Bloch theory as shown in Fig. 1. 

theory predicts an infinite Curie temperature as first 
pointed out by Tahir-Kheli and Callen.24 

For the M. Bloch theory, the expression for (Sz) is 

<S')=i-*. (53) 

In this case, for (Sz) to vanish, <!> must be J. However, as 
we shall see more directly in the next section, the 
substitution of the Bloch renormalization factor into the 
expression for <£> results in an equation for (Sz) which 
over part of the temperature range has two positive 
solutions. There is a maximum temperature above which 
there is no self-consistent solution; however, the mag
netization is not zero at this maximum temperature. 
The magnetization actually falls to zero at a somewhat 
lower temperature. 

Therefore, in order to obtain a well-defined Curie 
point in the usual sense,30a it appears that in the limit of 
(Sz) —» 0 it is necessary f or £ —* 0 and f or a —•> 0 in such 
a way that 

2a 
— _C 7k(Pk 
N k 

is finite. 

IV. MAGNETIZATION CURVES 

In order to display the similarities and differences of 
the results of these theories, we have plotted the tem
perature dependence of the magnetization as predicted 
by each theory for simple cubic, body-centered cubic, 
and face-centered cubic lattices. These plots were ob
tained by finding numerically the self-consistent solu
tion of the expressions for R and (Sz). The calculations 
were made using an IBM 1620. The sums over the 
Brillouin zone were performed using Gauss' approxi
mate quadrature method. A measure of the convergence 
of this method is the comparison of the computed value 
of the Watson sum30 [Eq. (46)] with the exact value. 
For example, for the face-centered cubic, we calculate 
the sum to be 1.34448 while the exact value is 1.34466. 
The resultant error in the Curie temperatures of the 
random phase and Callen theories are of the order of 
0 .1%. Similar results are obtained for the body-
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FIG. 1. A plot of the reduced magnetization M(T)/M(0) versus 
the reduced temperature kT/Jz for each of the four theories for a 
face-centered cubic lattice and spin §. The form and relative posi
tions of the curves for the body-centered and simple cubic lattices 
are very similar to those shown above. 
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centered cubic; however, the errors are somewhat larger 
for a simple cubic lattice. Caution must be used in 
relying upon the Watson sum alone as a criterion for 
convergence of the summing procedure. Even though 
the Watson sum converges rapidly as the number of 
points sampled increases, closely related sums may be 
found to converge much more slowly. The convergence 
of the Watson sum is an indication of the convergence 
of the summing procedure, but each sum must be re
examined on an individual basis. 

In Fig. 1 we show the magnetization curves for the 
face-centered cubic lattice. Despite the differences in the 
low-temperature expansions, all four theories are very 
nearly identical in this region, i.e., kT/\2J<Q.\. The 
Oguchi-Honma curve was traced to higher temperatures 
than those shown in Fig. 1; for example, at a reduced 
temperature {kT/\2J) of 255, the magnetization is 
3.7 X10-4 . 

The body-centered and simple cubic magnetization 
curves are very similar to those shown in Fig. 1 when 
plotted versus the appropriate reduced temperature 
kT/Jz. The curves can be brought into even closer 
agreement if the magnetizations are plotted versus the 
normalized temperature T/Tc, where Tc is the Curie 
temperature. Such curves are shown in Fig. 2 for the 
random phase, Callen and Bloch theories. The Bloch 
reduced temperature is normalized by using the maxi
mum temperature for which there is a solution. The 
curves for the three lattices are represented by a single 
shaded line in Fig. 2: The upper edge of the line corre
sponds to the face-centered cubic curve; the lower edge 
to the simple cubic curve; the body-centered cubic 
curve lies close to that of the simple cubic. As can be 
seen from Fig. 2, the curves for each theory are very 
nearly independent of structure. (E. R. Callen31 has 
made similar plots for the Callen theory for the face-
centered cubic lattices with spin \ and spin f and finds 
negligible spin dependence.) The Oguchi-Honma curves 
are in a sense already normalized since all have infinite 
Curie temperatures, and indeed the body-centered and 
simple cubic curves fall very nearly on the face-centered 
curve shown in Fig. 1; again the face-centered curve is 
slightly higher. 

Tahir-Kheli and ter Haar19-28 have found that just 
below the Curie temperature the magnetization of both 

31 E. R. Callen (private communication). 

REDUCED TEMPERATURE T/T c 

FIG. 2. A plot of the reduced magnetization M(T)/M(0) versus 
the temperature normalized with respect to the Curie temperature 
T[Tc for each of the four theories. The band shown for each theory-
represents the spread in the magnetization curve due to structure. 
The upper edge of each band corresponds to the face-centered 
cubic lattice; the lower edge of each band corresponds to the 
simple cubic lattice. The body-centered cubic lattice curve lies in 
between but closer to that of the simple cubic. 

the random phase and the Callen theories varies as 
(1 — T/Tc)

112 and that this result is nearly independent 
of structure and spin. As noted above the latter obser
vation is valid over the entire temperature range and 
indeed the (1 — T/Tc)

1/2 dependence fits well over the 
range between Tc/2 and Tc (i.e., for values of the re
duced magnetization between 0.8 and 0). 

In summary, despite the differences in the low-
temperature expansions, all four theories are nearly 
identical in this region, i.e., kT/Jz<0.l. For each of the 
four theories, the curves of the magnetization versus 
normalized temperature are nearly independent of 
structure. The Oguchi-Honma theory does indeed give 
an infinite Curie temperature while the Bloch curve 
shows the behavior discussed in the previous section: a 
maximum temperature above which there is no self-
consistent solution, but a nonzero magnetization at this 
temperature. The random phase approximation and 
Callen theories give definite Curie temperatures. 


